Difference between revisions of "Elasticity (pipe material)"

From flowpedia.com
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
Elasticity is the tendency of solid objects and materials to return to their original shape after the external forces (load) causing a deformation are removed. An object is elastic when it comes back to its original size and shape when the load is no longer present. Physical reasons for elastic behaviour vary among materials and depend on the microscopic structure of the material. For example, the elasticity of polymers and rubbers is caused by stretching polymer chains under an applied force. In contrast, the elasticity of metals is caused by resizing and reshaping the crystalline cells of the lattices (which are the material structures of metals) under the action of externally applied forces.<ref> https://phys.libretexts.org </ref>
+
Elasticity is the tendency of solid objects and materials to return to their original shape after the external forces (load) causing a deformation are removed. An object is elastic when it comes back to its original size and shape when the load is no longer present. Physical reasons for elastic behaviour vary among materials and depend on the microscopic structure of the material. For example, the elasticity of polymers and rubbers is caused by stretching polymer chains under an applied force. In contrast, the elasticity of metals is caused by resizing and reshaping the crystalline cells of the lattices (which are the material structures of metals) under the action of externally applied forces.
  
The two parameters that determine the elasticity of a material are its elastic modulus and its elastic limit. A high elastic modulus is typical for materials that are hard to deform; in other words, materials that require a high load to achieve a significant strain. An example is a steel band. A low elastic modulus is typical for materials that are easily deformed under a load; for example, a rubber band. If the stress under a load becomes too high, then when the load is removed, the material no longer comes back to its original shape and size, but relaxes to a different shape and size: The material becomes permanently deformed. The elastic limit is the stress value beyond which the material no longer behaves elastically but becomes permanently deformed. <ref group="footnotes"> </ref>
+
The two parameters that determine the elasticity of a material are its elastic modulus and its elastic limit. A high elastic modulus is typical for materials that are hard to deform; in other words, materials that require a high load to achieve a significant strain. An example is a steel band. A low elastic modulus is typical for materials that are easily deformed under a load; for example, a rubber band. If the stress under a load becomes too high, then when the load is removed, the material no longer comes back to its original shape and size, but relaxes to a different shape and size: The material becomes permanently deformed. The elastic limit is the stress value beyond which the material no longer behaves elastically but becomes permanently deformed. <ref> https://phys.libretexts.org </ref>
 
   
 
   
 
Measure of how much an object deforms (strain) when a given stress (force) is applied.<ref> https://www.boundless.com/physics/textbooks </ref>
 
Measure of how much an object deforms (strain) when a given stress (force) is applied.<ref> https://www.boundless.com/physics/textbooks </ref>
  
 
The ability of an object or material to resume its normal shape after being stretched or compressed.
 
The ability of an object or material to resume its normal shape after being stretched or compressed.
In physics, elasticity (from Greek ἐλαστός "ductible") is the ability of a body to resist a distorting influence or deforming force and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate forces are applied on them. If the material is elastic, the object will return to its initial shape and size when these forces are removed.<ref>#https://en.wikipedia.org/wiki/Elasticity_%28physics%29</ref>
+
In physics, elasticity (from Greek ἐλαστός "ductible") is the ability of a body to resist a distorting influence or deforming force and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate forces are applied on them. If the material is elastic, the object will return to its initial shape and size when these forces are removed.<ref> https://en.wikipedia.org/wiki/Elasticity </ref>
  
 
== References ==
 
== References ==
 
<references />
 
<references />

Latest revision as of 10:39, 26 September 2017

Elasticity is the tendency of solid objects and materials to return to their original shape after the external forces (load) causing a deformation are removed. An object is elastic when it comes back to its original size and shape when the load is no longer present. Physical reasons for elastic behaviour vary among materials and depend on the microscopic structure of the material. For example, the elasticity of polymers and rubbers is caused by stretching polymer chains under an applied force. In contrast, the elasticity of metals is caused by resizing and reshaping the crystalline cells of the lattices (which are the material structures of metals) under the action of externally applied forces.

The two parameters that determine the elasticity of a material are its elastic modulus and its elastic limit. A high elastic modulus is typical for materials that are hard to deform; in other words, materials that require a high load to achieve a significant strain. An example is a steel band. A low elastic modulus is typical for materials that are easily deformed under a load; for example, a rubber band. If the stress under a load becomes too high, then when the load is removed, the material no longer comes back to its original shape and size, but relaxes to a different shape and size: The material becomes permanently deformed. The elastic limit is the stress value beyond which the material no longer behaves elastically but becomes permanently deformed. [1]

Measure of how much an object deforms (strain) when a given stress (force) is applied.[2]

The ability of an object or material to resume its normal shape after being stretched or compressed. In physics, elasticity (from Greek ἐλαστός "ductible") is the ability of a body to resist a distorting influence or deforming force and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate forces are applied on them. If the material is elastic, the object will return to its initial shape and size when these forces are removed.[3]

References