ASTM International
ASTM International is one of the largest voluntary standards developing organizations in the world. We are a not-for-profit organization that provides a forum for the development and publication of international voluntary consensus standards for materials, products, systems and services. Our volunteer members represent producers, users, consumers, government, and academia from more than 140 countries. They develop technical documents that are the basis of manufacturing, management, procurement, codes and regulations for dozens of industry sectors.
ASTM volunteer members belong to one or more standards-writing committees, each of which covers a subject area such as steel, petroleum, medical devices, consumer products, nanotechnology, additive manufacturing and many more. These committees develop the more than 12,000 ASTM standards found on our site and in the 80-volume Annual Book of ASTM Standards.
History
The Pennsylvania Railroad, the largest corporation of the 19th century, played a key role in the quest for standard specifications. Its efforts in this field were initiated by Charles Dudley, who received his Ph.D. from Yale University in 1874, and who later became the driving force behind ASTM. Dudley organized the railroads new chemistry department, where he investigated the technical properties of oil, paint, steel, and other materials the Pennsylvania Railroad bought in large quantities. Based on his research, Dudley issued standard material specifications for the company's suppliers.
Dudley soon realized that he had taken on a formidable task. In 1878, he published his first major report, The Chemical Composition and Physical Properties of Steel Rails, in which he analyzed the durability of different types of steel rails. It concluded that mild steel produced a longer-lasting rail than hard steel, and Dudley recommended an improved formula for mild steel for rails to be used by the Pennsylvania. His report raised a firestorm among steel masters, who disputed its findings. The application of Dudley's new formula, they charged, produced unnecessary expenses that increased production costs. Steel producers, determined to keep full control over output and quality control, viewed standard specifications issued by their customers as unacceptable meddling. Dudley later reported that steel companies often told the railroads that if they did not take the rails offered [by the manufacturers], they would not get any.
The disappointing response to his first report reinforced Dudley's resolve to initiate a constructive dialogue between suppliers and their customers. Each party had much to learn from the other. Steel makers knew more about practical production issues and the industry's cost structure than their customers, while railroads, locomotive builders, and other users of steel products had better knowledge of a material's long-term performance, knowledge that could help manufacturers improve the quality of rails, plates, and beams. Dudley concluded that a good specification needs both the knowledge of the products behavior during manufacture and knowledge of those who know its behavior while in service.
The introduction of more powerful locomotives, heavier rolling stock, and longer trains gave buyers an additional incentive to work more closely with their suppliers. Statistics compiled by railroad engineers indicated that the average wheel load of cars increased 75%, and traffic volume rose more than 300% during the late 19th century. Rail manufacturers needed this kind of data to supply steel that conformed to higher performance standards. But the lack of cooperation between producers and users of steel rails was an enormous detriment to such improvements.